更多>>精华博文推荐
更多>>人气最旺专家

张孝祥

领域:消费日报网

介绍:关键词:压下率;界面剪切强度;横向剪切强度差分类号:TG33581ABSTRACTABSTRACT:StealnothasthesteelCu-graphitecompositeplateonlyplatecharacteristicsofmechanicalandalsohasthehighsUength,goodpropeniescharacteristicsofmaterialwiththermalcoppergraphitecompositegoodconductivityandSteelwealresistancelubricationandotherhighadvantagestemperatureisallidealmaterialThedemandCu—graphitecompositeplatehightemperaturebearingallusedinandwalkslife,itSthroughoutotherfieldsButtheboardmethodwastoexistingcompositepost-processingsupposedbeshearincreaseisnotcost,in...

叶赫纳拉氏

领域:硅谷网

介绍:等压面上凸为高压,下凹为低压。ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机

环亚ag88手机版旗舰厅
本站新公告ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机
g4a | 2019-01-16 | 阅读(349) | 评论(896)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机
q4q | 2019-01-16 | 阅读(18) | 评论(126)
“偷书不算偷”。【阅读全文】
jb5 | 2019-01-16 | 阅读(375) | 评论(417)
少数富人把持垄断的弊端自然永绝,这是最简便易行之法”——孙中山在《民报》创刊周年大会的演说民生主义:(“平均地权”)认识:反对封建地主土地所有制,但不彻底实现土地国有,是资产阶级的土地纲领以解决贫富悬殊,带空想色彩是三民主义的补充和完善核定地价现价归原主,涨价归国家4、三民主义的影响是资产阶级革命纲领反映资产阶级要求发展民主政治和资本主义的要求反映中国人民争取民族独立、富强的愿望指导辛亥革命取得胜利20世纪10到20年代,世界和中国出现了哪些新的变化?1917年十月革命1919年五四运动1921年中共成立二、新三民主义的提出1、背景①孙中山维护民主共和的一系列斗争失败(二次革命、护国运动、护法运动、第二次护法运动等)②国共合作的实现③共产国际的帮助(1924年1月国民党一大召开)“中国现在祸乱的根本,就是在军阀和那援助军阀的帝国主义者。【阅读全文】
ep3 | 2019-01-16 | 阅读(61) | 评论(567)
语教学实际上是思维的教学。【阅读全文】
3dz | 2019-01-16 | 阅读(42) | 评论(259)
[拓展训练]P82/2P92/2热点突破三 主要的外力作用及外力作用的综合分析外力作用地貌形态分布地区风力作用风力侵蚀风蚀沟谷、洼地、风蚀蘑菇、雅丹地貌干旱、半干旱地区风力沉积沙丘、黄土高原流水作用流水侵蚀瀑布、峡谷、喀斯特地貌黄土高原的千沟万壑丹霞地貌湿润、半湿润地区流水沉积山麓冲积扇、冲积平原、(河口)三角洲冰川侵蚀作用峡湾、冰蚀湖泊欧洲西部、北美、青藏高原河流地貌的发育1、河流侵蚀地貌(P87)【巩固练习】冲积扇:P83/1-2-3P92/部分外力作用方向的判定 1、风力作用方向的判定沉积物颗粒大的先沉积,颗粒小的后沉积,具有分选性规律总结部分外力作用方向的判定 2、流水作用方向的判定V型谷分布在流水侵蚀强烈的河流上游的山区;“宽谷”︺分布在地势平坦、流速较慢的河流下游流水的沉积作用在不同的位置形成不同的地貌类型:在山口处形成冲积扇,在河口处形成三角洲,在地势平坦的地区形成沿岸沉积平原规律总结【拓展训练】河流阶地:P82/5-6;P94/9-10-11海陆交界处地貌变化:P83/4-5-6;7-8;P85/4-5-6P93/3-4-5风沙、沙丘分析:P84/9-10;P85/9-10在玛纳斯河冲积扇边缘有一条狭长的泉水溢出带,有“千泉”之称。【阅读全文】
h4r | 2019-01-15 | 阅读(545) | 评论(808)
通过这两次系统的培训,为我更好的投入工作打下了良好基础。【阅读全文】
ms2 | 2019-01-15 | 阅读(159) | 评论(797)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
zfr | 2019-01-15 | 阅读(324) | 评论(997)
当你满足了这最基本的两项,接着就是口才了,一张能言善辩的嘴对销售员说是多么的重要,你完全可以改变一个人对一个产品的看法,让他从不想买,变成想买,这就需要你根据他的心理和需求进行判断了,这又会用到心理学的知识等等。【阅读全文】
ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机,ag88环亚手机
du3 | 2019-01-15 | 阅读(983) | 评论(987)
误区2:辩证否定就是要求抛弃一切。【阅读全文】
fxs | 2019-01-14 | 阅读(13) | 评论(493)
桩条款规定,承载力试验必须满足设计要求。【阅读全文】
wce | 2019-01-14 | 阅读(80) | 评论(768)
PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8【阅读全文】
2wn | 2019-01-14 | 阅读(882) | 评论(572)
  爱吃香蕉的人外表坚强、内心软弱、多愁善感,在意别人对自己的评价。【阅读全文】
zv2 | 2019-01-14 | 阅读(600) | 评论(788)
如果国家和集体控股,则具有明显的公有性,可增强公有制经济的活力,扩大公有制资本的支配范围,增强公有制的主体作用。【阅读全文】
h2g | 2019-01-13 | 阅读(708) | 评论(517)
总结与计划是相辅相成的,要以个人计划为依据,制定个人计划总是在个人总结经验的基础上进行的。【阅读全文】
uw1 | 2019-01-13 | 阅读(975) | 评论(339)
;海尔的商标是二个天真活泼的小孩形象:一个黑头发,一个黄头发一个是中国儿童,一个是德国儿童。【阅读全文】
共5页

友情链接,当前时间:2019-01-16

利来娱乐账户 利来w66 利来国际w66手机版 www.w66.com w66.com
利来娱乐ag旗舰厅 利来娱乐w66 利来国际公司 国际利来旗舰厅
利来国际最老牌 利来国际老牌博彩 利来国际AG旗舰厅 利来娱乐账户 利来国际最给利的老牌
利来国际 利来网上娱乐 利来国际最给利的老牌 利来,利来娱乐 w66.
三明市| 潮安县| 芮城县| 伊金霍洛旗| 定兴县| 博兴县| 平和县| 巴彦淖尔市| 奉贤区| 潜山县| 河西区| 三台县| 庆安县| 张家界市| 黄浦区| 武城县| 卢龙县| 绥中县| 宣城市| 历史| 姚安县| 昆山市| 行唐县| 江孜县| 汤阴县| 阜南县| 连城县| 东方市| 花莲市| 自治县| 沙雅县| 虹口区| 阿荣旗| 乐安县| 横峰县| 石嘴山市| 延寿县| 洮南市| 宾川县| 塔河县| 东乡县| http://m.99765660.cn http://m.42079290.cn http://m.43030999.cn http://m.62342262.cn http://m.73912914.cn http://m.17346912.cn